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Design of fluorescent metal sensors has recently become one ofA

the most active research areas because the sensors can provide
situ and real-time information for a number of applications including
environment monitoring, industrial process control, metalloneuro-
chemistry, and biomedical diagnosticé. widely used strategy is

to link the metal recognition portion closely with a signal generation
moiety such as a fluorophore. While quite successful in designing
sensors for diamagnetic metal ions such a& PHg?", Zr?+, and
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Cu*2this method has been applied to paramagnetic metal ions suchFigure 1. (A) The secondary structure of the €usensor DNAzyme. F

as Cd" with only limited success, due to their intrinsic fluorescence
guenching properties? Most Cl#* sensors showed decreased
emission upon CU binding? which was undesirable for analytical
purposes. First, the room for signal change was at most 1-fold.
Second, such “turn-off” sensors may give false positive results by
guenchers in real samples. Among the reported “turn-or?*Cu
sensord,few have nanomolar sensitivityd-9with high selectivity!ad

and free of organic solventd.One way to circumvent this
guenching problem is to spatially separate the metal recognition
part from the fluorescent signaling moiety so that they are
independent of each other. A significant challenge then is to

transduce metal binding to signal enhancement when the two parts

are well-separated. We have previously reported a novel metal
sensing platform with DNAzyme catalytic beacons that spatially
separated the two parts by rigid double-stranded DNRAnd
sensors for diamagnetic metal ions such a5"Rind UQ?™ have
been demonstrated. Herein, we apply this method to turn-on
sensing of paramagnetic €uwith high sensitivity and selectivity.
Copper is a widely used metal that can leak into the environment

and Q denote fluorophore and quencher, respectively. The cleavage site is
indicated by an arrow. (B) Signal generation scheme of th& Catalytic
beacon. (C) Fluorescence spectra of the sensor before and 10 min after
addition of 20uM Cu?*.
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Figure 2. (A) Kinetics of fluorescence increase over background at varying
CU** levels. The arrow indicates the point of €waddition. Inset: responses

through various routes. Low concentration of copper is an essential ¢ oy Ci#* levels. (B) The rate of fluorescence enhancement plotted against

nutrient. However, exposure to high level of copper even for a short
period of time can cause gastrointestinal disturbance, while long-
term exposure causes liver or kidney damagée U.S. Environ-
mental Protection Agency (EPA) has set the limit of copper in
drinking water to be 1.3 ppm~20 uM).

We chose a Cii-dependent DNA-cleaving DNAzyme reported
by Breaker et al. as a basis for the sensor de¥igii.On the basis
of the original DNAzyme sequences, we rationally designed® Cu
sensor as shown in Figure 1A. The sensor contained two DNA

CW" concentration. Inset: rates at the low Zuregion. (C) Sensor
selectivity. The buffer contained 1.5 M NaCl, 50 mM HEPES, pH 7.0, and
50 uM ascorbate. Cii concentrations were labeled on the left side of each
well, while others were on the right end (irM).

1B). This hypothesis was supported by the observation that the FAM
emission increased by13-fold after addition of C& (Figure 1C).
Such a signal generation method was termed catalytic beacon
because the involvement of catalytic reactiéf3he sensor system
also contained 5@M ascorbate because it can significantly enhance

strands that formed a complex. The substrate (in black) was labeledthe reaction rate (Figure S9, Supporting Informatinj2 Ascorbate

with a FAM fluorophore (6-carboxyfluorescein) at theehd and

a quencher (lowa Black FQ) at the-&nd, while the enzyme (in
blue) contained a'squencher. Such a dual-quencher approach was
employed to suppress background sigA&l$he substrate and
enzyme associate through two base-pairing regions. Fherfion

of the enzyme binds the substrate via Wats@nick base pairs
and the 3region through formation of a DNA triplex. Initially,

was also useful for suppressing quenching. For example, FAM
quenching was<15% with 50uM Cu?* (Figure S8).

To test sensitivity, the kinetics of fluorescence increase at 520
nm in the presence of varying concentrations of?Cuvere
monitored. As shown in Figure 2A, fluorescence enhancement rates
were higher with increasing levels of &u The rates in the time
window of 2—4 min were plotted in Figure 2B. A detection limit

the FAM emission was quenched by the nearby quenchers. In theof 35 nM (2.3 ppb) was determined, which represents one of the
presence of CU, the substrate was irreversibly cleaved at the most sensitive turn-on Ctisensorg2d:9The sensor has a dynamic
cleavage site (the guanine in red). Following cleavage, we range up to 2&M, which is useful for detecting Cti in drinking
hypothesized that the cleaved pieces were released due to decreasedater because the U.S. EPA has defined a maximum contamination
affinities to the enzyme, leading to increased fluorescence (Figure level of 20uM. In addition to being highly sensitive and possessing
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Supporting Information Available: Experimental procedures, gel-

Figure 3. Responses of a DNAzyme sensor array to metal mixtures. based assays, controls and fluorescence quenching (PDF). This material
is available free of charge via Internet at http://pubs.acs.org.
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